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Abstract. The low-energy-level macroscopic wave functions of the Bose-Einstein condensate (BEC)
trapped in a symmetric double-well and a periodic potential are obtained by solving the Gross-Pitaevskii
equation numerically. The ground state tunnel splitting is evaluated in terms of the even and odd wave
functions corresponding to the global ground and excited states respectively. We show that the numerical
result is in good agreement with the analytic level splitting obtained by means of the periodic instanton
method.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 02.60.Cb Numerical simulation; solution of equations

1 Introduction

The experimental realization of Bose-Einstein condensa-
tion (BEC) in double-well trap [1–5] and optical lat-
tice [6–10] has stimulated active research into various
aspects of quantum tunneling phenomena such as the
Josephson junction [11–14], atomic interferometry [4],
the two-wire waveguide [2], etc. Dalfovo [11] suggested
a Josephson like effect by considering a confining poten-
tial with two wells separated by a barrier. A difference
between the chemical potentials of the atoms in the two
traps can be achieved, for example, by loading a differ-
ent number of atoms in the traps. The first experimental
evidence [7] of the oscillating atom current was observed
instead in an one-dimensional Josephson Junction array
realized with condensates in a laser standing wave, i.e.,
an optical lattice [15]. The latest techniques of coherently
splitting the condensate by deforming the single optical
trap into two wells serve as a model system for tunneling
in the condensate and provide a perfect demonstration of
a trapped-atom interferometer [4,5].

The coherent tunneling of BEC between double-well
traps results in the level splitting of the macroscopic
ground state and hence the macroscopic coherence, which
has been observed in interference experiments [1,4]. Re-
cently, the energy-band structure and level splitting due
to quantum tunneling in two weakly linked condensates in
the “phase” representation have been evaluated in terms
of the periodic instanton method [16], which manifests
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itself as a powerful tool for the calculation of the tun-
neling rate and a good approximation for the dilute bo-
son gas [17]. It, nevertheless, is not able to explicitly take
into account the nonlinear interaction term in the Gross-
Pitaevskii equation (GPE) describing the atom-atom col-
lisions in BEC [18]. It is naturally expected that as the
number density of atoms in the condensates increases, the
effect of the nonlinear interaction between atoms would
become important. In the present paper we solve the GPE
numerically in order to have a quantitative evaluation of
the energy level splitting of the ground state for BEC con-
fined in a symmetric double-well trap and an optical lat-
tice and explore the dependence of the energy level split-
ting on the chemical potential and the s-wave scattering
length between atoms.

Although the numerical solution of GPE has been de-
veloped into a standard procedure, this never prevents us
from seeking efficient analytical methods. The advantage
of a nonperturbative method is that it gives not only an
good description of the tunneling phenomena but also a
comprehensive physical understanding in the context of
quantum field theory. The periodic instanton configura-
tions, which have been shown to be a useful tool in several
areas of research such as spin tunneling, bubble nucleation
and string theory, enable also the investigation of the fi-
nite temperature behavior of these systems. In the case of
the Bose-Einstein system, it turns out that the periodic
instanton method is reliable in evaluating the tunnel split-
ting for BEC trapped in both the double-well and optical
lattice in the regime of experimental values of the chemi-
cal potential and scattering length. The intention of this
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paper is to quantitatively compare the deviation of the
instanton result from the exact numerical solution and to
address the applicability of the instanton method to actual
experimental situations.

We restricted our discussion to a quasi-one-
dimensional (Q1D) BEC since it is mathematically
simple, in which the BEC is prepared in optical and
magnetic traps by putting atoms in cylindrical traps
long enough that the one-particle energy-level spacing in
the radial direction exceeds the interatomic-interaction
energy, and the atoms can move effectively in the axial
direction [19].

The paper is organized as follows. In Section 2 we give
a brief review of the mean-field analysis for BEC trapped
in external potentials. In Section 3 the energy level split-
ting is derived in terms of the instanton method based on
the GPE with, however, the nonlinear interaction term in-
cluded implicitly in the chemical potential. In Section 4 we
present the numerical procedure for solving the GPE and
evaluation of the ground state level splitting. The numer-
ical level splitting is compared with the instanton result
in Section 5 and a brief summary is given in Section 6.

2 GPE for one-dimensional Bose gas

We are interested in the macroscopic quantum tunneling
between the condensates separated by potential barriers
and the main concern here is how the nonlinear interaction
between the atoms would affect the level splitting. We
begin with the energy functional for the condensed bosons
of massm confined in the external potential V (x) given by

E =
∫
dx

[
�

2

2m

∣∣∣∣dψ (x)
dx

∣∣∣∣
2

+ V (x) |ψ (x)|2 +
U0

2
|ψ (x)|4

]

(1)
where the order parameter of the condensate ψ (x) are
normalized to the number of atoms in the condensate∫
dx |ψ (x)|2 = N and the 1D effective interaction con-

stant U0 = 2�
2a/ma2

⊥ [20,21] characterizes the nonlinear
interaction in the condensate through s-wave scattering
length a. Here the radial extension of the ground state
wavefunction a⊥ =

√
�/mω⊥ is a typical length scale in

the transverse trap with a confinement frequency ω⊥. The
first-order variation of the energy functional leads to the
Gross-Pitaevskii equation (GPE), Hψ (x) = µψ (x), with
the chemical potential µ = 〈ψ |H |ψ〉 /N calculated as the
expectation value of the Hamiltonian

H = − �
2

2m
d2

dx2
+ V (x) + U0 |ψ (x)|2 . (2)

The transverse confinement frequency ω⊥ should be large
compared with µ/� so that the condensate is prepared
in one dimension. On the other hand, for a less strong
transverse confinement, atoms will oscillate in all direc-
tions which makes the model not exactly solvable. As can
be seen in the last part of the paper, tunneling would be
greatly enhanced in 3D.

Consider two models of the external potential where
atoms can tunnel through the barriers. The double-well
trapping potential of the form

Vdw(x) = V0

(
1 − x2/x2

0

)2
(3)

allows us to investigate the interwell coupling which re-
sults in the splitting of the energy level. The potential
barrier of depth V0 between the two minima ±x0 is as-
sumed to be large enough so that the overlap between the
wave functions relative to the two traps occurs only in the
classically forbidden region where the interaction can be
ignored. The optical lattice trapping potential

Vol(x) = V0 cos2 (k0x) , (4)

on the other hand, formed by the standing wave laser
beams with wavevector k0 [8], simulates the sine-Gordon
potential which is widely used in quantum field theory as
a periodic field model [22]. Quantum tunneling between
many wells leads to the formation of energy bands due to
the spatially periodic potential (4). A path integral calcu-
lation [22] was done for these quantum tunneling models
both for vacuum and excited states neglecting, however,
the nonlinear interaction. In our previous work [18], the
nonlinear interaction between the atoms was included in
the finite chemical potential and we realized that tunnel-
ing occurs at the level of chemical potential. Here we will
solve the GPE numerically and compare the numerical
results with the analytical ones.

For convenience we rescale the energies and distances
in units of �ω0 and oscillator lengths a0 =

√
�/mω0, with

ω0 =
√
V ′′(xb)/m being the frequency of small oscillations

at the bottom of each well xb in double-well or optical lat-
tice traps. The wave function is correspondingly rescaled
in units of

√
1/a0 so that it remains normalized to N . The

GPE thus takes the following dimensionless form
[
−1

2
d2

dx2
+ V (x) + U0 |ψ (x)|2

]
ψ (x) = µψ (x) (5)

with the potential barrier V0 and chemical potential µ
measured in units of �ω0 and the nonlinear interaction
parameter becomes U0 = 2aa0/a

2
⊥. Furthermore, we fix

the potential parameters as x0 =
√

8V0 and k0 = 1/2
√
V0

in order to leave us with only one adjustable parameter,
i.e., the potential depth V0. The tunnel splitting depends
on these parameters x0 and k0, which are effectively the
separations between the well bottoms, in a similar way as
on V0. In the case of an optical lattice, the depth of the
barrier is usually measured in units of the recoil energy
Er = �

2k2
0/2m of the atoms. It is, however, not difficult

to transfer the energy units between this convention and
ours.

3 The tunnel splitting evaluated
with instanton method

Quantum tunneling between noninteracting particles
localized in two adjacent wells with macroscopic wave
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functions ψ+, ψ− leads to an effective energy level split-
ting ∆µ, which removes the asymptotic degeneracy. The
wave functions of the ground state ψe with even parity
and the first excited state ψo with odd parity are super-
positions of the localized wave functions ψ+ and ψ−

ψe = (ψ+ + ψ−) /
√

2 (6)

ψo = (ψ+ − ψ−) /
√

2 (7)

with energy eigenvalues µ±∆µ/2, respectively. When the
interatomic coupling constant U0 vanishes, the problem
reduces to the solution of a linear Schröndinger equation
with the Hamiltonian H = −(1/2)d2/dx2 + V (x). The
nonlinear interaction increases the chemical potential and
even for the system at zero temperature, tunneling occurs
at a higher level µ than the ground state. The tunnel split-
ting can be found with the instanton method [18,22] and
is generally expressed as

∆µ =
ω(µ)
π

exp [−S(µ)] (8)

where the imaginary time action S(µ) is calculated
through the barrier region (µ < V (x)) once from turn-
ing point −b to turning point b:

S(µ) =
∫ b

−b

√
2(V (x) − µ)dx (9)

and the frequency ω(µ) appearing in the prefactor is the
frequency of the classical periodic oscillations at energy
µ > V (x) in the classically accessible region with the
boundary determined by the turning points b and a

ω(µ) =
π∫ a

b
dx√

2(µ−V (x))

. (10)

The path integral method [23] has been used in the eval-
uation of the tunneling rate prefactor and the barrier V0

between two wells is assumed to be high enough to safely
use the WKB wave functions [11] in the calculation of the
transition amplitude. For the potential in the form of (3)
the level splitting reduces to

∆µ =
√

1 + u

2K (k′)
exp (−W ) (11)

W =
16V0

3
(1 + u)1/2 (E (k) − uK (k)) , (12)

where K (k) and E (k) denote the complete Jacobian el-
liptic integral of the first and second kinds respectively.
The corresponding parameters are defined as u =

√
µ/V0,

k2 = (1 − u)/(1 + u), and k′2 = 1− k2. When the nonlin-
ear interaction vanishes, the dimensionless chemical po-
tential reduces to µ = 1/2 and the above result turns out
to be

∆µ =

√
2
π

8V 1/2
0 exp

(
−16V0

3

)
. (13)

which resembles the case of the vacuum instanton.

Tunneling between many potential wells splits the level
further into as many sublevels as the number of wells. The
Bloch theorem tells us that the eigenvalues of the periodic
potential exhibits an energy band structure in the tight-
binding approximation

E(θ) = µ+
∆µ

2
cos (θa) (14)

with ∆µ the band width of the quantum state with en-
ergy µ. Here the Bloch wave vector θ is confined to the
first Brillouin zone [−π/a, π/a] of the optical lattice with
a lattice constant a = λ/2. For the periodic potential of
the optical lattice (4), the energy band width reads

∆µ =
1

2
√

2K (k′)
exp (−W ) (15)

W = 4
√

2V0

(E (k) − k′2K (k)
)

(16)

with k2 = 1 − µ/V0.

4 Numerical procedure

There exist various numerical approaches for studying the
energy spectrum and dynamics of BEC trapped in the ex-
ternal potentials [24]. In the present paper, we solve the
GPE numerically and find the ground- and first excited-
state wave functions ψe (x), ψo (x) where the correspond-
ing energy expectation values µe and µo are obtained by
direct calculation. The level splitting ∆µ = µe − µo is
described as a function of parameters N and U0.

We adopt the Gauss-Seidel method to solve equa-
tion (5) numerically and hence start from the diffusion
equation

∂tψ = −Hψ =:
1
2
d2ψ

dx2
− 1

2
ρ, (17)

with a diffusion constant of 1/2 and a source term ρ. As
t → +∞, the wave function relaxes to an equilibrium so-
lution which means that all time derivatives vanish. As a
matter of fact the diffusion equation (17) is obtained from
the NLSE equation (5) with the time being replaced by a
negative imaginary time.

We use the following Crank-Nicholson scheme to dis-
cretize equation (17) by using the space step h and time
step ∆

ψn+1
i − ψn

i

∆
=

1
2h2

[
(
ψn+1

i+1 − 2ψn+1
i + ψn+1

i−1

)
+

(
ψn

i+1 − 2ψn
i + ψn

i−1

)
]

− 1
2

[
Vi (xi) + U0 |ψn

i |2
] (
ψn+1

i + ψn
i

)
(18)

where ψn
i = ψ(xi, tn) denotes the exact solution at xi = ih

and tn = n∆. The method is stable, unitary, and second-
order accurate in space and time [25–27]. In a lattice
of s points equation (18) represents a tridiagonal set
with open boundary conditions or a cyclic tridiagonal set
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Fig. 1. Level splitting and wavefunctions of condensates confined in a double well potential for V0 = 5. (a) The symmetric (full
line) and antisymmetric (dotted lines) wave functions of the ground state with U0 = 0 (noninteracting case). (b) The same as

(a) but for U0 = 0.06. The Thomas–Fermi solution ψTF = [(µ− V (x)) /U0]
1/2 is shown by the dashed lines.

with periodic boundary conditions for i = 2, 3, ..., s − 1.
For tridiagonal sets, the whole solution can be encoded
very concisely using the procedures of LU decomposition,
forward- and back- substitution while for cyclic tridiago-
nal sets, the procedure of Sherman-Morrison Formula is
used [25]. For the double-well case we choose the space
step h = 0.01, time step ∆ = 0.001 and, s = 2400. For the
optical lattice, ∆ = 0.02 and s = 2500. The values of these
parameters are chosen to satisfy the stability criterion of
the Crank-Nicholson code.

We start from the initial, trial wave functions (t = 0)
given in equations (6) and (7) and choose the eigenstates
in the non-interacting limit as our trial wave functions
such that ψ+, ψ− are the degenerate eigenstates in the
left- and right-well with the same energy eigenvalue. In
our procedure, all of the wavefunctions with even parity
finally evolve into the lowest eigenstate with even parity,
i.e., the lower level state for the double well or the bot-
tom of energy band for the optical lattice. Similarly those
states with odd parity evolve into the lowest state with
odd parity, i.e., the upper level state for the double well
or the top of the energy band for the optical lattice. The
boundary and normalization conditions are implemented
at each time step. To test the validity of our code, the nu-
merical wave functions for a stationary GPE in a spheri-
cal trap is compared with the corresponding results given
in [28] and the agreement is perfect.

5 Numerical result with the nonlinear
interaction

As an example we consider weak-linked condensates
of 87Rb atoms confined in multi-traps with frequency
ω0 = 100 Hz as in reference [12] and the corresponding
oscillator length is a0 = 2.70× 10−4 cm. The s-wave scat-
tering length is in the range 85abohr < asc < 140abohr,
where abohr is the Bohr radius [29]. In our analysis we use
asc = 100abohr. The transverse confinement frequency ω⊥

is taken to be 2π×250 Hz. The corresponding radial exten-
sion a⊥ = 6.81× 10−4 cm and the interatomic-interaction
constant U0 = 0.06 (in units of �ω0), which corresponds
to a weak [30] nonlinear interaction such that we could
examine its effect on the level splitting. We always mea-
sured energies in units of �ω0 and lengths in units of the
oscillator length a0, so V0 is all we need.

As a comparison we first of all deal with the “nonin-
teracting” case. When V0 = 5, the analytical tunnel split-
ting of the instanton approach given in equation (11) is
∆µ = 3.74 × 10−11 and our numerical result is ∆µ =
3.60× 10−11. This again proves the validity of our numer-
ical simulation. The corresponding wave function is shown
in Figure 1a. In this paper we are mainly interested in the
ground state, and for this purpose the choice of s = 2400
is seen to be adequate for most of the calculations. In Fig-
ure 1b we show the profiles of the even (solid line) and odd
(dotted line) wave functions ψe,o (x) for 344 atoms con-
fined in the trap with height V0 = 5, which are the even-
and odd-eigenstates of the Hamiltonian with the nonlin-
ear interaction term U0 |ψ (x)|2. Also the Thomas-Fermi
approximation ψTF = [(µ− V (x)) /U0]

1/2 for V (x) < µ
is given by the dashed lines.

Now we turn to examine the difference of level split-
ting obtained from the instanton method and the numeri-
cal simulation for the double-well trap. In Figure 2, ∆µ on
a logarithmic scale to base 10 as a function of the chem-
ical potential is depicted for barrier heights, V0 = 4 and
V0 = 5. Results from both the numerical simulation (solid
line) and instanton approach (dotted line) exhibit an en-
hancement of the tunneling with increasing chemical po-
tential. To show how large the difference is, in the insets,
we plot the splitting divided by the exponential factor of
the analytical result. The results of the two approaches
always have the same order of magnitude and are close to
each other. The periodic instanton method evaluates fairly
well the tunneling splitting even if the nonlinear interac-
tion is included. Quantitatively, however, it always over-
estimates the splitting for the whole range of the chemical
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Fig. 2. Level splitting as a function of chemical potential µ for two values of the barrier height V0 = 5 (a) and V0 = 4 (b). Insets:
the splitting divided by the exponential factor of the analytical result in the insets. Solid lines: GPE results ∆µGPE/ exp(−W ),
dotted lines: periodic instanton results ∆µInstanton/ exp(−W ).

Fig. 3. The interaction constant U0 dependence of level split-
ting for condensates in a double-well for V0 = 5. The inset
shows the splitting divided by the exponential factor of analyt-
ical result. Solid lines: GPE results, ∆µGPE/ exp(−W ), dotted
lines: periodic instanton results ∆µInstanton/ exp(−W ).

potential. These can be seen more clearly from the inter-
acting constant U0 dependence of the level splitting dis-
played in Figure 3 and its inset for V0 = 5. We emphasize
here that a peculiar feature of this periodic instanton re-
sult for the level splitting is that the prefactor depends on
the chemical potential as displayed in the insets of Fig-
ure 2. This result is important, as has been shown in [18].

For the case of the optical lattice potential we still
choose the same parameters as in the case of the double-
well. The nonlinear interaction constant between atoms
in the same well, U0 = 0.06 for the repulsive interaction.
The typical profile of the condensate wave function ψe (x),
shown by the solid line, and ψo (x), shown by the dotted

Fig. 4. The symmetric (full line) and antisymmetric (dotted
lines) wave functions in an optical lattice for V0 = 5.

lines, are plotted in Figure 4 for V0 = 5 and 150 atoms in
each well. The even wave function is symmetric, and the
odd wave function is maximally antisymmetric, i.e., the
wavefunction segment in each well is antisymmetric with
respect to those of its neighbors. Figures 5a and 5b display
the chemical potential dependence of the level splitting for
V0 = 5 and V0 = 4, as determined by the method outlined
above. Again, we find the results from the periodic instan-
ton method and GPE have the same order of magnitude.

By comparing Figures 2 and 5, it is shown that when
the nonlinear interaction between atoms is included, the
level splitting is smaller than the instanton result in the
double-well case, but the splitting is larger in the optical
lattice case. This distinction depends on the structure of
the trapping potentials, for example, atoms in the optical
lattice can tunnel through the barrier in two directions,
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Fig. 5. Level splitting as a function of chemical potential µ in an optical lattice for V0 = 5 (a) and V0 = 4 (b). The insets show
the splitting divided by the exponential factor of the analytical result. Solid lines: GPE results ∆µGPE/ exp(−W ), dotted lines:
periodic instanton results ∆µInstanton/ exp(−W ).

while the tunnel path for those in the double-well is one-
way only. This makes the periodic instanton result differ-
ent from the double well case. In spite of this, the peri-
odic instanton method remains good enough to describe
the level splitting for the BEC.

Recently a single bosonic Josephson junction [31] has
been implemented by two weakly linked BEC in a double-
well potential. In previously reported realizations of con-
densates in double-well potentials [5] the time scale of tun-
neling dynamics was in the range of thousands of seconds.
In contrast, their set-up allows the realization of nonlinear
tunneling times on the order of 50 ms, which makes the
direct observation of the nonlinear dynamics in a single
bosonic Josephson junction possible for the first time. We
emphasize here the distinction between tunneling in 3D
and that in quasi-1D systems. The important parameter,
the “tunneling matrix element” K [12] between two con-
densates is related to the energy level splitting through
K = ∆µ/2. The period of oscillation T can be obtained
by numerically integrating equation (1) in reference [31]
for each given parameter Λ = NU0/2K. In the 3D case,
K is often assumed to be of the order 0.1 nK or 25 Hz,
which gives a relative small value for Λ ∼ 10. In contrast,
in the 1D case, the tight confinement in the other 2 direc-
tions would suppress drastically the tunneling and make
the link between the condensates even weaker. According
to our calculation the parameterK obviously takes typical
values of 10−3 ∼ 1 Hz and Λ may be as large as 103 ∼ 106.
As a consequence, the atoms tend to be trapped in the po-
tential wells and the observation of Josephson oscillation
becomes almost impossible, e.g., the initial population im-
balance must be less than 0.06 for Λ ∼ 103. A simple cal-
culation shows that for N = 600, U0 = 0.06, V0 = 5, the
Josephson oscillation may be observed with a period 2 ms,
which is less than that in the 3D experiments.

According to our calculation, the energy splitting is
very small compared with the chemical potential of the

system and increases exponentially with the chemical po-
tential. The tunneling effect gives rise to the macroscopic
phase coherence of BEC across the barriers, which results
in the significant observable interference phenomena be-
tween different BEC segments.

6 Summary

In this paper we have investigated the tunnel splitting
of the ground state for a weakly-linked BEC trapped in
double-well potential and in optical lattice by solving the
Gross-Pitaevskii equations numerically. It turns out that
the periodic instanton method is a reliable tool in the
evaluation of the tunnel splitting for the BEC. The reason
for this is that for the quantum tunneling through the
potential barrier, the nonlinear interaction is negligibly
small and contributes overall to a finite chemical potential.
Our numerical scheme could easily be improved for the
investigation of the dynamical behavior of the condensates
in multi-well potentials.
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